Перейти на: Главную | Индексную | Форумную страницу |
Так, как регистр CS содержит 13C6, то CS:100 содержит первую команду A10000. Отладчик интерпретирует эту команду как MOV и определяет ссылку к первому адресу [0000] в сегменте данных. Квадратные скобки необходимы для указания ссылки к адресу памяти, а не к непосредственным данным. Если бы квадратных скобок не было, то команда MOV AX,0000 oбнулила бы регистр AX непосредственным значением 0000. Теперь введем команду T. Команда MOV AX,[0000] перешлет cодержимое слова, находящегося по нулевому смещению в сегменте данных, в регистр AX. Содержимое 2301 преобразуется командой в 0123 и помещается в регистр AX. Следующую команду ADD можно выполнить, введя еще раз команду T. В результате содержимое слова в DS по смещению 0002 прибавится в регистр AX. Теперь регистр AX будет содержать сумму 0123 и 0025, т.е. 0148. Следующая команда MOV [0004],AX выполняется опять по вводу T. Эта команда пересылает содержимое регистра AX в слово по смешению 0004. Для просмотра изменений содержимого сегмента данных введите D DS:00. Первые девять байт будут следующими: значение в сегменте данных: 23 01 25 00 48 01 2A 2A 2A величина смещения: 00 01 02 03 04 05 06 07 08 Значение 0148, которое было занесено из регистра AX в сегмент данных по смещению 04 и 05, имеет обратное представление 4801. Заметьте что эти шест. значения представлены в правой части экрана их символами в коде ASCII. Например, шест.23 генерируeтся в символ #, а шест.25 - в символ %. Три байта с шест. значениями 2A высвечиваются в виде трех звездочек (***). Левая часть дампа показывает действительные машинные коды, которые находятся в памяти. Правая часть дампа только помогает проще локализовать символьные (срочные) данные. Для просмотра содержимого сегмента кодов введите D DS:100 так, как показано на рис.2.3. В заключении введите Q для завершения работы с программой. МАШИННАЯ АДРЕСАЦИЯ ________________________________________________________________ Для доступа к машинной команде процессор определяет ее адрес из содержимого регистра CS плюс смещение в регистре IP. Например, предположим, что регистр CS содержит шест.04AF (действительный адрес 04AF0), а регистр IP содержит шест. 0023: CS: 04AF0 IP: 0023 ----- Адрес команды: 04B13 Если, например, по адресу 04B13 находится команда: A11200 MOV AX,[0012] | Адрес 04B13 то в памяти по адресу 04B13 содержится первый байт команды. Процессор получает доступ к этому байту и по коду команды (A1) oпределяет длину команды - 3 байта. Для доступа к данным по смещению [0012] процессор определяет aдрес, исходя из содержимого регистра DS (как правило) плюс cмещение в операнде команды. Если DS содержит шест.04B1 (реальный адрес 04B10), то результирующий адрес данных определяется cледующим образом: DS: 04B10 Смещение: 0012 ----- Адрес данных: 04B22 Предположим, что по адресам 04B22 и 04B23 содержатся следующие данные: Содержимое: 24 01 | | Адрес: 04B22 04B23 Процессор выбирает значение 24 из ячейки по адресу 04B22 и помещает его в регистр AL, и значение 01 по адресу 04B23 - в регистр AH. Регистр AX будет содержать в результате 0124. В процессе выборки каждого байта команды процессор увеличивает значение регистра IP на единицу, так что к началу выполнения следующей команды в нашем примере IP будет содержать смещение 0026. Таким обpазом процессор теперь готов для выполнения следующей команды, которую он получает по адресу из регистра CS (04AF0) плюс текущее смещение в регистре IP (0026), т.е. 04B16. Четная адресация ------------------ Процессор 8086, 80286 и 80386 действуют более эффективно, eсли в программе обеспечиваются доступ к словам, расположенным по четным адресам. В предыдущем примере процессор может сделать oдну выборку слова по адресу 4B22 для загрузки его непосредственно в регистр. Но если слово начинается на нечетном адресе, процессор выполняет двойную выборку. Предположим, например, что команда должна выполнить выборку слова, начинающегося по адреcу 04B23 и загрузить его в регистр AX: Содержимое памяти: |хх|24|01|хх| | Адрес: 04B23 Сначала процессор получает доступ к байтам по адресам 4B22 и 4B23 и пересылает байт из ячейки 4B23 в регистр AL. Затем он получает доступ к байтам по адресам 4B24 и 4B25 и пересылает байт из ячейки 4B23 в регистр AH. В результате регистр AX будет содержать 0124. Нет необходимости в каких-либо специальных методах программирования для получения четной или нечетной адресации, не обязательно также знать является адрес четным или нет. Важно знать, что, во-первых, команды обращения к памяти меняют слово при загрузке его в регистр так, что получается правильная последовательность байт и, во-вторых, если программа имеет частый доступ к памяти, то для повышения эффективности можно определить данные так, чтобы они начинались по четным адресам. Например, поскольку начало сегмента должно всегда находиться по четному адресу, первое поле данных начинается также по четному адресу и пока следующие поля определены как слова, имеющие четную длину, они все будут начинаться на четных адресах. В большинстве случаев, однако, невозможно заметить ускорения работы при четной адресации из-за очень высокой скорости работы процессоров. Ассемблер имеет директиву EVEN, которая вызывает выравнивание данных и команд на четные адреса памяти. ПРИМЕР МАШИННЫХ КОДОВ: ОПРЕДЕЛЕНИЕ РАЗМЕРА ПАМЯТИ ________________________________________________________________ В первом упражнении в данной главе проводилась проверка размера памяти (RAM), которую имеет компьютер. BIOS (базовая система ввода/вывода) в ROM имеет подпрограмму, которая определяет pазмер памяти. Можно обратиться в BIOS по команде INT, в данном cлучае по прерыванию 12H. В результате BIOS возвращает в регистр AX размер памяти в килобайтах. Загрузите в память DEBUG и введите для INT 12H и RET следующие машинные коды: E CS:100 CD 12 CB Нажмите R (и Return) для отображения содержимого регистров и первой команды. Регистр IP содержит 0100, при этом высвечивается команда INT 12H. Теперь нажмите T (и Return) несколько раз и просмотрите выполняемые команды BIOS (отладчик показывает мнемокоды, хотя в действительности выполняются машинные коды): STI PUSH DS MOV AX,0040 MOV DS,AX MOV AX,[0013] POP DS IRET В этот момент регистр AX содержит размер памяти в шестнадцатиpичном формате. Теперь введите еще раз команду T для выхода из BIOS и возврата в вашу программу. На экране появится команда RET для машинного кода CB, который был введен вами. СПЕЦИАЛЬНЫЕ СРЕДСТВА ОТЛАДЧИКА ________________________________________________________________ В операционной системе DOS версии 2.0 и старше можно использовать DEBUG для ввода команд ассемблера так же, как и команд машинного языка. На практике можно пользоваться обоими методами. Команда A ----------- Команда отладчика A (Assemble) переводит DEBUG в режим приема команд ассемблера и перевода их в машинные коды. Установим начальный адрес следующим образом: A 100 [Return] Отладчик выдаст значение адреса сегмента кодов и смещения в виде хххх:0100. Теперь можно вводить каждую команду, завершая клавишей Return. Когда вся программа будет введена, нажмите снова клавишу Return для выхода из режима ассемблера. Введите следующую программу: MOV AL,25 [Return] MOV BL,32 [Return] ADD AL,BL [Return] RET [Return] по завершению на экране будет следующая информация: хххх:0100 MOV AL,25 хххх:0102 MOV BL,32 хххх:0104 ADD AL,BL хххх:0106 RET В этот момент отладчик готов к приему следующей команды. При нажатии Return операция будет прекращена. Можно видеть, что отладчик определил стартовые адреса каждой команды. Прежде чем выполнить программу, проверим сгенерированные машинные коды. Команда U ----------- Команда отладчика U (Unassemble) показывает машинные коды для команд ассемблера. Необходимо сообщить отладчику адреса первой и последней команды, которые необходимо просмотреть (в данном cлучае 100 и 106). Введите: U 100,106 [и Return] и на экране появится хххх:0100 B025 MOV AL,25 хххх:0102 B332 MOV BL,32 хххх:0104 00D8 ADD AL,BL хххх:0106 C3 RET Теперь проведем трассировку выполнения программы, начиная с команды R для вывода содержимого регистров и первой команды программы. С помощью команд T выполним последовательно все команды программы. Теперь вы знаете, как вводить программу в машинном коде или на языке ассемблера. Обычно используется ввод на языке ассемблера, когда машинный код неизвестен, а ввод в машинном коде - для изменения программы во время выполнения. Однако в действительности программа DEBUG предназначена для отладки программ и в следующих главах основное внимание будет уделено использованию языка ассемблера. Сохранение программы из отладчика ----------------------------------- Можно использовать DEBUG для сохранения программ на диске в следующих случаях: 1. После загрузки программы в память машины и ее модификации необходимо сохранить измененный вариант. Для этого следует: - загрузить программу по ее имени: DEBUG n:имя файла [Return] - просмотреть программу с помощью команды D и ввести изменения по команде E, - записать измененную программу: W [Return] 2. Необходимо с помощью DEBUG написать небольшую по объему программу и сохранить ее на диске. Для этого следует: - вызвать отладчик DEBUG, - с помощью команд A (assemble) и E (enter) написать программу, - присвоить программе имя: N имя файла.COM [Return]. Тип программы должен быть COM (см. гл.6 для пояснений по COM-файлам), - так как только программист знает, где действительно кончается его программа, указать отладчику длину программы в байтах. В последнем примере концом программы является команда хххх:0106 C3 RET Эта команда однобайтовая и поэтому размер программы будет равен 106 (конец) минус 100 (начало), т.е. 6. - запросить регистр CX командой: R CX [Return] - отладчик выдаст на этот запрос CX 0000 (нулевое значение) - указать длину программы - 6, - записать измененную программу: W [Return] В обоих случаях DEBUG выдает сообщение "Writing nnnn bytes." (Запись nnnn байтов). Если nnnn равно 0, то произошла ошибка при вводе длины программы, и необходимо повторить запись cнова. ОСНОВНЫЕ ПОЛОЖЕНИЯ НА ПАМЯТЬ ________________________________________________________________ Отладчик DOS DEBUG это достаточное мощное средство, полезное для отладки ассемблерных программ. Однако следует быть осторожным с ее использованием, особенно для команды E (ввод). Ввод данных в неправильные адреса памяти или ввод некорректных данных могут привести к непредсказуемым результатам. На экране в этом случае могут появиться "странные" символы, клавиатура заблокирована или даже DOS прервет DEBUG и перезагрузит себя с диска. Какие-либо серьезные повреждения вряд ли произойдут, но возможны некоторые неожиданности, а также потеря данных, которые вводились при работе с отладчиком. Если данные, введенные в сегмент данных или сегмент кодов, оказались некорректными, следует, вновь используя команду E, исправить их. Однако, можно не заметить ошибки и начать трассиpовку программы. Но и здесь возможно еще использовать команду E для изменений. Если необходимо начать выполнение с первой команды, то следует установить в регистре командного указателя (IP) значение 0100. Введите команду R (register) и требуемый регистр в следующем виде: R IP [Return] Отладчик выдаст на экран содержимое регистра IP и перейдет в ожидание ввода. Здесь следует ввести значение 0100 и нажать для проверки результата команду R (без IP). 0тладчик выдаст содержимое регистров, флагов и первую выполняемую команду. Теперь можно, используя команду T, вновь выполнить трассировку программы. Если ваша программа выполняет какие-либо подсчеты, то возможно потребуется очистка некоторых областей памяти и регистров. Но yбедитесь в сохранении содержимого регистров CS, DS, SP и SS, которые имеют специфическое назначение. Прочитайте в руководстве по DOS главу о программе DEBUG. В настоящий момент рекомендуется: вводный материал и следующие команды oтладчика: дамп (D), ввод (E), шестнадцатиричный (H), имя (N), выход (Q), регистры (R), трассировка (T) и запись (W). Можно oзнакомиться также и с другими командами и проверить как они работают. ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ ________________________________________________________________ 2.1. Напишите машинные команды для а) пересылки шест. значения 4629 в регистр AX; б) сложения шест. 036A с содержимым регистра AX. 2.2. Предположим, что была введена следующая е команда: E CS:100 B8 45 01 05 25 00 Вместо шест. значения 45 предполагалось 54. Напишите команду E для корректировки только одного неправильно введенного байта, т.е. непосредственно замените 45 на 54. 2.3. Предположим, что введена следующая е команда: E CS:100 B8 04 30 05 00 30 CB а) Что представляют собой эти команды? (Сравните с первой программой в этой главе). б) После выполнения этой программы в регистре AX должно быть значение 0460, но в действительности оказалось 6004. В чем ошибка и как ее исправить? в) После исправления команд необходимо снова выполнить программу с первой команды. Какие две команды отладчика потребуются? 2.4. Имеется следующая программа в машинных кодах: B0 25 D0 E0 B3 15 F6 E3 CB Программа выполняет следующее: - пересылает шест. значение 25 в регистр AL; - сдвигает содержимое регистра AL на один бит влево (в результате в AL будет 4A); - пересылает шест. значение 15 в регистр BL; - умножает содержимое регистра AL на содержимое регистра BL. Используйте отладчик для ввода (E) этой программы по адресу CS:100. Не забывайте, что все значения представлены в шестнадцатиричном виде. После ввода программы наберите D CS:100 для просмотра сегмента кода. Затем введите команду R и необходимое число команд T для пошагового выполнения программы до команды RET. Какое значение будет в регистре AX в результате выполнения программы? 2.5. Используйте отладчик для ввода (E) следующей программы в машинных кодах: Данные: 25 15 00 00 Машинный код: A0 00 00 D0 E0 F6 26 01 00 A3 02 00 CB Программа выполняет следующее: - пересылает содержимое одного байта по адресу DS:00 (25) в регистр AL; - сдвигает содержимое регистра AL влево на один бит (получая в результате 4A); - умножает AL на содержимое одного байта по адресу DS:01 (15); - пересылает результат из AX в слово, начинающееся по адресу DS:02. После ввода программы используйте команды D для просмотра сегмента данных и сегмента кода. Затем введите команду R и необходимое число команд T для достижения конца программы (RET). В этот момент регистр AX должен содержать результат 0612. Еще раз используйте команду D DS:00 и заметьте, что по адресу DS:02 значение записано как 1206. 2.6. Для предыдущего задания (2.5) постройте команды для записи программы на диск под именем TRIAL.COM. 2.7. Используя команду A отладчика, введите следующую про грамму: MOV BX,25 ADD BX,30 SHL BX,01 SUB BX,22 NOP RET сделайте ассемблирование и трассировку выполнения этой программы до команды NOP. ГЛАВА 3 Требования языка ассемблер __________________________________________________________________________ Ц е л ь: показать основные требования к программам на языке ассемблера и этапы ассемблирования, компановки и выполнения программы. ВВЕДЕНИЕ ________________________________________________________________ В гл.2 было показано как ввести и выполнить программу на машинном языке. Несомненно при этом ощутима трудность расшифровки машинного кода даже для очень небольшой программы. Сомнительно, чтобы кто-либо серьезно кодировал программы на машинном языке, за исключением разных "заплат" (корректировок) в программе на языках высокого уровня и прикладные программы. Более высоким уровнем кодирования является уровень ассемблера, на котором программист пользуется символическими мнемокодами вместо машинных команд и описательными именами для полей данных и адресов памяти. Программа написанная символическими мнемокодами, которые используются в языке ассемблера, представляет собой исходный модуль. Для формирования исходного модуля применяют программу DOS EDLIN или любой другой подходящий экранный редактор. Затем с помощью программы ассемблерного транслятора исходный текст транслируется в машинный код, известный как объектная программа. И наконец, программа DOS LINK определяет все адресные ссылки для объектной программы, генерируя загрузочный модуль. В данной главе объясняются требования для простой программы на ассемблере и показаны этапы ассемблирования, компановки и выполнения. КОММЕНТАРИИ В ПРОГРАММАХ НА АССЕМБЛЕРЕ ________________________________________________________________ Использование комментариев в программе улучшает ее ясность, oсобенно там, где назначение набора команд непонятно. Комментаpий всегда начинаются на любой строке исходного модуля с символа точка с запятой (;) и ассемблер полагает в этом случае, что все символы, находящиеся справа от ; являются комментарием. Комментарий может содержать любые печатные символы, включая пробел. Комментарий может занимать всю строку или следовать за командой на той же строке, как это показано в двух следующих примерах: 1. ;Эта строка полностью является комментарием 2. ADD AX,BX ;Комментарий на одной строке с командой Комментарии появляются только в листингах ассемблирования исходного модуля и не приводят к генерации машинных кодов, поэтому можно включать любое количество комментариев, не оказывая влияния на эффективность выполнения программы. В данной книге команды ассемблера представлены заглавными буквами, а комментарии - строчными (только для удобочитаемости). ФОРМАТ КОДИРОВАНИЯ ________________________________________________________________ Основной формат кодирования команд ассемблера имеет следующий вид: [метка] команда [операнд(ы)] Метка (если имеется), команда и операнд (если имеется) pазделяются по крайней мере одним пробелом или символом табуляции. Максимальная длина строки - 132 символа, однако, большинство предпочитают работать со строками в 80 символов (соответственно ширине экрана). Примеры кодирования: Метка Команда Операнд COUNT DB 1 ;Имя, команда, один операнд MOV AX,0 ;Команда, два операнда Метки ------- Метка в языке ассемблера может содержать следующие символы: Буквы: от A до Z и от a до z Цифры: от 0 до 9 Спецсимволы: знак вопроса (?) точка (.) (только первый символ) знак "коммерческое эт" (@) подчеркивание (-) доллар ($) Первым символом в метке должна быть буква или спецсимвол. Ассемблер не делает различия между заглавными и строчными буквами. Максимальная длина метки - 31 символ. Примеры меток: COUNT, PAGE25, $E10. Рекомендуется использовать описательные и смысловые метки. Имена регистров, например, AX, DI или AL являются зарезервированными и используются только для указания соответствующих регистров. Например, в команде ADD AX,BX ассемблер "знает", что AX и BX относится к регистрам. Однако, в команде MOV REGSAVE,AX ассемблер воспримет имя REGSAVE только в том случае, если оно будет определено в сегменте данных. В прил.3 приведен cписок всех зарезервированных слов ассемблера. Команда --------- Мнемоническая команда указывает ассемблеру какое действие должен выполнить данный оператор. В сегменте данных команда (или директива) определяет поле, рабочую oбласть или константу. В сегменте кода команда определяет действие, например, пересылка (MOV) или сложение (ADD). Операнд --------- Если команда специфицирует выполняемое действие, то операнд определяет а) начальное значение данных или б) элементы, над которыми выполняется действие по команде. В следующем примере байт COUNTER определен в сегменте данных и имеет нулевое значение: Метка Команда Операнд COUNTER DB 0 ;Определить байт (DB) с нулевым значением Команда может иметь один или два операнда, или вообще быть без операндов. Рассмотрим следующие три примера: Команда Операнд Комментарий Нет операндов RET ;Вернуться Один операнд INC CX ;Увеличить CX Два операнда ADD AX,12 ;Прибавить 12 к AX Метка, команда и операнд не обязательно должны начинаться с какой-либо определенной позиции в строке. Однако, рекомендуется записывать их в колонку для большей yдобочитаемости программы. Для этого, например, редактор DOS EDLIN обеспечивает табуляцию через каждые восемь позиций. ДИРЕКТИВЫ ________________________________________________________________ Ассемблер имеет ряд операторов, которые позволяют упpавлять процессом ассемблирования и формирования листинга. Эти операторы называются псевдокомандами или директивами. Они действуют только в процессе ассемблирования программы и не генерируют машинных кодов. Большинство директив показаны в следующих разделах. В гл.24 подробно описаны все директивы ассемблера и приведено более чем достаточно соответствующей информации. Гл.24 можно использовать в качестве справочника. Директивы управления листингом: PAGE и TITLE ---------------------------------------------- Ассемблер содержит ряд директив, управляющих форматом печати (или листинга). Обе директивы PAGE и TITLE можно использовать в любой программе. Д и р е к т и в а PAGE. В начале программы можно указать количество строк, распечатываемых на одной странице, и максимальное количество символов на одной строке. Для этой цели cлужит директива PAGE. Следующей директивой устанавливается 60 строк на страницу и 132 символа в строке: PAGE 60,132 Количество строк на странице может быть в пределах от 10 до 255, а символов в строке - от 60 до 132. По умолчанию в ассемблере установлено PAGE 66,80. Предположим, что счетчик строк установлен на 60. В этом случае ассемблер, распечатав 60 строк, выполняет прогон листа на начало следующей страницы и увеличивает номер страницы на eдиницу. Кроме того можно заставить ассемблер сделать прогон листа на конкретной строке, например, в конце сегмента. Для этого необходимо записать директиву PAGE без операндов. Ассемблер автоматически делает прогон листа при обработке диpективы PAGE. Д и р е к т и в а TITLE. Для того, чтобы вверху каждой страницы листинга печатался заголовок (титул) программы, используется диpектива TITLE в следующем формате: TITLE текст Рекомендуется в качестве текста использовать имя программы, под которым она находится в каталоге на диске. Например, если программа называется ASMSORT, то можно использовать это имя и описательный комментарий общей длиной до 60 символов: TITLE ASMSORT - Ассемблерная программа сортировки имен В ассемблере также имеется директива подзаголовка SUBTTL, которая может оказаться полезной для очень больших программ, содержащих много подпрограмм. Директива SEGMENT ------------------- Любые ассемблерные программы содержат по крайней мере один сегмент - сегмент кода. В некоторых программах используется сегмент для стековой памяти и сегмент данных для определения данных. Асcемблерная директива для описания сегмента SEGMENT имеет следующий формат: Имя Директива Операнд имя SEGMENT [параметры] . . . имя ENDS Имя сегмента должно обязательно присутствовать, быть уникальным и соответствовать соглашениям для имен в ассемблере. Директива ENDS обозначает конец сегмента. Обе директивы SEGMENT и ENDS должны иметь одинаковые имена. Директива SEGMENT может содержать три типа параметров, определяющих выравнивание, объединение и класс. 1. В ы р а в н и в а н и е. Данный параметр определяет границу начала сегмента. Обычным значением является PARA, по которому сегмент устанавливается на границу параграфа. В этом случае начальный адрес делится на 16 без остатка, т.е. имеет шест. адрес nnn0. В случае отсутствия этого операнда ассемблер принимает по умолчанию PARA. 2. О б ъ е д и н е н и е. Этот элемент определяет объединяется ли данный сегмент с другими сегментами в процессе компановки после ассемблирования (пояснения см. в следующем разделе "Компановка программы"). Возможны следующие типы объединений: STACK, COMMON, PUBLIC, AT выражение и MEMORY. Сегмент стека определяется следующим образом: имя SEGMENT PARA STACK Когда отдельно ассемблированные программы должны объединяться компановщиком, то можно использовать типы: PUBLIC, COMMON и MEMORY. В случае, если программа не должна объединяться с другими программами, то данная опция может быть опущена. 3. К л а с с. Данный элемент, заключенный в апострофы, используется для группирования относительных сегментов при компановке: имя SEGMENT PARA STACK 'Stack' Фрагмент программы на рис.3.1. в следующем разделе иллюстрирует директиву SEGMENT и ее различные опции. Директива PROC ---------------- Сегмент кода содержит выполняемые команды программы. Кроме того этот сегмент также включает в себя одну или несколько процедур, определенных директивой PROC. Сегмент, содержащий только одну процедуру имеет следующий вид: имя-сегмента SEGMENT PARA имя-процедуры PROC FAR Сегмент . кода . с . одной RET процедурой имя-процедуры ENDP имя-сегмента ENDS Имя процедуры должно обязательно присутствовать, быть уникальным и удовлетворять соглашениям по именам в ассемблере. Операнд FAR указывает загрузчику DOS, что начало данной процедуры является точкой входа для выполнения программы. Директива ENDP определяет конец процедуры и имеет имя, аналогичное имени в директиве PROC. Команда RET завершает выполнение программы и в данном случае возвращает управление в DOS. Сегмент может содержать несколько процедур (см. гл.7). Директива ASSUME ------------------ Процессор использует регистр SS для адресации стека, регистр DS для адресации сегмента данных и регистр CS для адресации cегмента кода. Ассемблеру необходимо сообщить назначение каждого сегмента. Для этой цели служит директива ASSUME, кодируемая в сегменте кода следующим образом: Директива Операнд ASSUME SS:имя_стека,DS:имя_с_данных,CS:имя_с_кода Например, SS:имя_стека указывает, что ассемблер должен ассоциировать имя сегмента стека с регистром SS. Операнды могут записываться в любой последовательности. Регистр ES также может присутствовать в числе операндов. Если программа не использует регистр ES, то его можно опустить или указать ES:NOTHING. Директива END --------------- Как уже показано, директива ENDS завершает сегмент, а директива ENDP завершает процедуру. Директива END в свою очередь полностью завершает всю программу: Директива Операнд END [имя_процедуры] Операнд может быть опущен, если программа не предназначена для выполнения, например, если ассемблируются только определения данных, или эта программа должна быть скомпанована с другим (главным) модулем. Для обычной программы с одним модулем oперанд содержит имя, указанное в директиве PROC, которое было oбозначено как FAR. ПАМЯТЬ И РЕГИСТРЫ ________________________________________________________________ Рассмотрим особенности использования в командах имен, имен в квадратных скобках и чисел. В следующих примерах положим, что WORDA определяет слово в памяти: MOV AX,BX ;Переслать содержимое BX в регистр AX MOV AX,WORDA ;Переслать содержимое WORDA в регистр AX MOV AX,[BX] ;Переслать содержимое памяти по адресу ; в регистре BX в регистр AX MOV AX,25 ;Переслать значение 25 в регистр AX MOV AX,[25] ;Переслать содержимое по смещению 25 Новым здесь является использование квадратных скобок, что потребуется в следующих главах. ИНИЦИАЛИЗАЦИЯ ПРОГРАММЫ ________________________________________________________________ Существует два основных типа загрузочных программ: EXE и COM. Рассмотрим требования к EXE-программам, а COM-программы будут представлены в гл.6. DOS имеет четыре требования для инициализации ассемблерной EXE-программы: 1) указать ассемблеру, какие cегментные регистры должны соответствовать сегментам, 2) сохранить в стеке адрес, находящийся в регистре DS, когда программа начнет выполнение, 3) записать в стек нулевой адрес и 4) загрузить в регистр DS адрес сегмента данных. Выход из программы и возврат в DOS сводится к использованию команды RET. Рис.3.1 иллюстрирует требования к инициализации и выходу из программы: 1. ASSUME - это ассемблерная директива, которая устанавливает для ассемблера соответствие между конкретными сегментами и сегментными регистрами; в данном случае, CODESG - CS, DATASG - DS и STACKSG - SS. DATASG и STACKSG не определены в этом примере, но они будут представлены следующим образом: STACKSG SEGMENT PARA STACK Stack 'Stack' DATASG SEGMENT PARA 'Data' Ассоциируя сегменты с сегментными регистрами, ассемблер сможет определить смещения к отдельным областям в каждом сегменте. Например, каждая команда в сегменте кодов имеет определенную длину: первая команда имеет смещение 0, и если это двухбайтовая команда, то вторая команда будет иметь смещение 2 и т.д. 2. Загрузочному модулю в памяти непосредственно предшествует 256-байтовая (шест.100) область, называемая префиксом программного сегмента PSP. Программа загрузчика использует регистр DS для установки адреса начальной точки PSP. Пользовательская программа должна сохранить этот адрес, поместив его в стек. Позже, команда RET использует этот адрес для возврата в DOS. 3. В системе требуется, чтобы следующее значение в стеке являлось нулевым адресом (точнее, смещением). Для этого команда SUB очищает регистр AX, вычитая его из этого же регистра AX, а команда PUSH заносит это значение в стек. 4. Загрузчик DOS устанавливает правильные адреса стека в регистре SS и сегмента кодов в регистре CS. Поскольку программа загрузчика использует регистр DS для других целей, необходимо инициализировать регистр DS двумя командами MOV, как показано на рис.3.1. В следующем разделе этой главы "Исходная программа. Пример II" детально поясняется инициализация регистра DS. 5. Команда RET обеспечивает выход из пользовательской программы и возврат в DOS, используя для этого адрес, записанный в стек в начале программы командой PUSH DS. Другим обычно используемым выходом является команда INT 20H. __________________________________________________________________________ CODESG SEGMENT PARA 'CODE' BEGIN PROC FAR 1. ASSUME CS:CODESG,DS:DATASG,SS:STACKG 2. PUSH DS ;Записать DS в стек 3. SUB AX,AX ;Установить ноль в AX PUSH AX ;Записать ноль в стек 4. MOV AX,DATASG ;Занести адрес MOV DS,AX ; DATASG в DS . . . 5. RET ;Возврат в DOS BEGIN ENDP CODESG ENDS END BEGIN __________________________________________________________________________ Рис.3.1. Инициализация EXE-программы. Теперь, даже если приведенная инициализация программы до конца не понятна - не отчаивайтесь. Каждая программа фактически имеет аналогичные шаги инициализации, так что их можно дублировать всякий раз при кодировании программ. ПРИМЕР ИСХОДНОЙ ПРОГРАММЫ ________________________________________________________________ Рис.3.2 обобщает предыдущие сведения в простой исходной программе на ассемблере. Программа содержит сегмент стека - STACKSG и сегмент кода - CODESG. __________________________________________________________________________ page 60,132 TITLE EXASM1 (EXE) Пример регистровых операций ;------------------------------------------------ STACKSG SEGMENT PARA SACK 'Stack' DB 12 DUP('STACKSEG') STACKSG ENDS ;------------------------------------------------ CODESG SEGMENT PARA 'Code' BEGIN PROC FAR ASSUME SS:STACKSG,CS:CODESG,DS:NOTHING PUSH DS ;Записать DS в стек SUB AX,AX ;Записать ноль PUSH AX ; в стек MOV AX,0123H ;Записать шест.0123 в AX ADD AX,0025H ;Прибавить шест.25 к AX MOV BX,AX ;Переслать AX в BX ADD BX,AX ;Прибавить BX к AX MOV CX,BX ;Переслать BX в CX SUB CX,AX ;Вычесть AX из CX SUB AX,AX ;Очистить AX NOP RET ;Возврат в DOS BEGIN ENDP ;Конец процедуры CODESG ENDS ;Конец сегмента END BEGIN ;Конец программы __________________________________________________________________________ Рис.3.2. Пример исходной программы на ассемблере. STACKSG содержит один элемент DB (определить байт), который определяет 12 копий слова 'STACKSEG'. В последующих программах стек не опpеделяется таким способом, но при использовании отладчика для просмотра ассемблированной программы на экране, данное определение помогает локализовать стек. CODESG содержит выполняемые команды программы, хотя первая директива ASSUME не генерирует кода. Директива ASSUME назначает регистр SS для STACKSG и регистр CS для CODESG. В действительности, эта директива сообщает ассемблеру, что для адресации в STACKSG необходимо использовать адрес в регистре SS и для адресации в CODESG - адрес в регистре CS. Системный загрузчик при загрузке программы с диска в память для выполнения устанавливает действительные адреса в регистрах SS и CS. Программа не имеет сегмента данных, так как в ней нет определения данных и, соответственно, в ASSUME нет необходимости ассигновать pегистр DS. Команды, следующие за ASSUME - PUSH, SUB и PUSH выполняют стандартные действия для инициализации стека текущим адресом в регистре DS и нулевым адресом. Поскольку, обычно, программа выполняется из DOS, то эти команды обеспечивают возврат в DOS после завершения программы. (Можно также выполнить программу из отладчика, хотя это особый случай). Последующие команды выполняют те же действия, что показаны на pис.2.1 в предыдущей главе, когда рассматривался отладчик. ОСНОВНЫЕ ПОЛОЖЕНИЯ НА ПАМЯТЬ ________________________________________________________________ - Не забывайте ставить символ "точка с запятой" перед комментариями. - Завершайте каждый сегмент директивой ENDS, каждую процедуру - директивой ENDP, а программу - директивой END. - В директиве ASSUME устанавливайте соответствия между сегментными регистрами и именами сегментов. - Для EXE-программ (но не для COM-программ, см. гл.6) обеспечивайте не менее 32 слов для стека, соблюдайте соглашения по инициализации стека командами PUSH, SUB и PUSH и заносите в регистр DS адрес сегмента данных. ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ ________________________________________________________________ 3.1. Какие команды заставляют ассемблер печатать заголовок в начале каждой страницы листинга и делать прогон листа? 3.2. Какие из следующих имен неправильны: а) PC_AT, б) $50, в) @$_Z, г) 34B7, д) AX? 3.3. Какое назначение каждого из трех сегментов, описанных в этой главе? 3.4. Что конкретно подразумевает директива END, если она завершает а) программу, б) процедуру, в) сегмент? 3.5. Укажите различия между директивой и командой. 3.6. Укажите различия в назначении RET и END. 3.7. Для сегментов кода, данных и стека даны имена CDSEG, DATSEG и STKSEG соответственно. Сформируйте директиву ASSUME. 3.8. Напишите три команды для инициализации стека адресом в DS и нулевым адресом. ГЛАВА 4 Ассемблирование и выполнение программ __________________________________________________________________________ Ц е л ь: показать процессы ассемблирования, компановки и выполнения программ. ВВЕДЕНИЕ ________________________________________________________________ В данной главе объясняется, как ввести в компьютер исходный ассемблерный текст программы, как осуществить ассемблирование, компоновку и выполнение программы. Кроме того, показана генерация таблицы перекрестных ссылок для целей отладки. ВВОД ПРОГРАММЫ ________________________________________________________________ На рис.3.2 был показан только исходный текст программы, предназначенный для ввода с помощью текстового редактора. Теперь можно использовать DOS EDLIN или другой текстовый редактор для ввода этой программы. Если вы никогда не пользовались программой EDLIN, то именно сейчас необходимо выполнить ряд упражнений из руководства по DOS. Для запуска программы EDLIN вставьте дискету DOS в дисковод A и форматизованную дискету в дисковод B. Чтобы убедиться в наличии на дискете свободного места для исходного текста, введите CHKDSK B:. Для винчестера во всех следующих примерах следует использовать C: вместо B:. Для ввода исходной программы EXASM1, наберите команду EDLIN В:EXASM1.ASM [Return] В результате DOS загрузит EDLIN в памяти и появится сообщение "New file" и приглашение "*-". Введите команду I для ввода строк, и затем наберите каждую ассемблерную команду так, как они изобpажены на рис.3.2. Хотя число пробелов в тексте для ассемблера не существенно, старайтесь записывать метки, команды, операнды и комментарии, выровненными в колонки, программа будет более yдобочитаемая. Для этого в EDLIN используется табуляция через каждые восемь позиций. После ввода программы убедитесь в ее правильности. Затем наберите E (и Return) для завершения EDLIN. Можно проверить наличие программы в каталоге на диске, введите DIR B: (для всех файлов) или DIR B:EXASM1.ASM (для одного файла) Если предполагается ввод исходного текста большего объема, то лучшим применением будет полноэкранный редактор. Для получения распечатки программы включите принтер и установите в него бумагу. Вызовите программу PRINT (для DOS 2.0 и старше). DOS загрузит программу в память и распечатает текст на принтере: PRINT B:EXASM1.ASM [Return] Программа EXASM.ASM еще не может быть выполнена - прежде необходимо провести ее ассемблирование и компоновку. В следующем pазделе показана эта же программа после ассемблирования и пояснены этапы ассемблирования и получения листинга. ПОДГОТОВКА ПРОГРАММЫ ДЛЯ ВЫПОЛНЕНИЯ ________________________________________________________________ После ввода на диск исходной программы под именем EXASM1.ASM необходимо проделать два основных шага, прежде чем программу можно будет выполнить. Сначала необходимо ассемблиpовать программу, а затем выполнить компоновку. Программисты на языке бейсик могут выполнить программу сразу после ввода исходного текста, в то время как для ассемблера и компилярных языков нужны шаги трансляции и компоновки. Шаг ассемблирования включает в себя трансляцию исходного кода в машинный объектный код и генерацию OBJ-модуля. Вы уже встречали примеры машинного кода в гл.2 и примеры исxодного текста в этой главе. OBJ-модуль уже более приближен к исполнительной форме, но еще не готов к выполнению. Шаг компановки включает преобразование OBJ-модуля в EXE (исполнимый) модуль, содержащий машинный код. Программа LINK, находящаяся на диске DOS, выполняет следующее: 1. Завершает формирование в OBJ-модуле адресов, которые остались неопределенными после ассемблирования. Во многих следующих программах такие адреса ассемблер отмечает как ----R. 2. Компонует, если необходимо, более одного отдельно ассемблированного модуля в одну загрузочную (выполнимую) программу; возможно две или более ассемблерных программ или ассемблерную программу с программами, написанными на языках высокого уровня, таких как Паскаль или Бейсик. 3. Инициализирует EXE-модуль командами загрузки для выполнения. После компановки OBJ-модуля (одного или более) в EXE-модуль, можно выполнить EXE-модуль любое число раз. Но, если необходимо внести некоторые изменения в EXE-модуль, следует скорректировать исходную программу, ассемблировать ее в другой OBJ-модуль и выполнить компоновку OBJ-модуля в новый EXE-модуль. Даже, если эти шаги пока остаются непонятными, вы обнаружите, что, получив немного навыка, весь процесс подготовки EXE-модуля будет доведен до автоматизма. Заметьте: определенные типы EXE-программ можно преобразовать в oчень эффективные COM-программы. Предыдущие примеры, однако, не cовсем подходят для этой цели. Данный вопрос рассматривается в главе 6. АССЕМБЛИРОВАНИЕ ПРОГРАММЫ ________________________________________________________________ Для того, чтобы выполнить исходную ассемблерную программу, необходимо прежде провести ее ассемблирование и затем компоновку. На дискете с ассемблерным пакетом имеются две версии aссемблера. ASM.EXE - сокращенная версия с отсутствием некоторых незначительных возможностей и MASM.EXE - полная версия. Если размеры памяти позволяют, то используйте версию MASM (подробности см. в соответствующем руководстве по ассемблеру). Для ассемблирования, вставьте ассемблерную дискету в дисковод A, а дискету с исходной программой в дисковод B. Кто имеет винчестер могут использовать в следующих примеpах C вместо A и B. Простейший вариант вызова программы это ввод команды MASM (или ASM), что приведет к загрузке программы ассемблера с диска в память. На экране появится: source filename [.ASM]: object filename [filename.OBJ]: source listing [NUL.LST]: cross-reference [NUL.CRF]: Курсор при этом расположится в конце первой строки, где необходимо указать имя файла. Введите номер дисковода (если он не определен умолчанием) и имя файла в следующем виде: B:EXASM1. Не следует набирать тип файла ASM, так как ассемблер подразумевает это. Во-втором запросе предполагается аналогичное имя файла (но можно его заменить). Если необходимо, введите номер дисковода B:. Третий запрос предполагает, что листинг ассемблирования программы не требуется. Для получения листинга на дисководе B наберите B: и нажмите Return. Последний запрос предполагает, что листинг перекрестных cсылок не требуется. Для получения листинга на дисководе B, наберите B: и нажмите Return. Если вы хотите оставить значения по умолчанию, то в трех последних запросах просто нажмите Return. Ниже приведен пример запросов и ответов, в результате которых ассемблер должен cоздать OBJ, LST и CRF-файлы. Введите ответы так, как показано, за исключением того, что номер дисковода может быть иной. source filename [.ASM]:B:EXASM1 [Return] object filename [filename.OBJ]:B: [Return] source listing [NUL.LST]:B: [Return] cross-reference [NUL.CRF]:B: [Return] Всегда необходимо вводить имя исходного файла и, обычно, запрашивать OBJ-файл - это требуется для компановки программы в загрузочный файл. Возможно потребуется указание LST-файла, особенно, если необходимо проверить сгенерированный машинный код. CRF-файл полезен для очень больших программ, где необходимо видеть, какие команды ссылаются на какие поля данных. Кроме того, ассемблер генерирует в LST-файле номера строк, которые используются в CRF-файле. В прил.4 "Режимы ассемблирования и редактирования" перечислены режимы (опции) для ассемблера версий 1.0 и 2.0. Ассемблер преобразует исходные команды в машинный код и выдает на экран сообщения о возможных ошибках. Типичными ошибками являются нарушения ассемблерных соглашений по именам, неправильное написание команд (например, MOVE вместо MOV), а также наличие в опеpандах неопределенных имен. Программа ASM выдает только коды ошибок, которые объяснены в руководстве по ассемблеру, в то время как программа МASM выдает и коды ошибок, и пояснения к ним. Всего имеется около 100 сообщений об ошибках. Ассемблер делает попытки скорректировать некоторые ошибки, но в любом случае следует перезагрузить текстовый редактор, исправить исходную программу (EXASM1.ASM) и повторить ассемблирование. На рис.4.1 показан листинг, полученный в результате асcемблирования программы и записанный на диск под именем EXASM1.LST. __________________________________________________________________________ 1 page 60,132 2 TITLE EXASM1 (EXE) Пример регистровых операций 3 ;----------------------------------------------- 4 0000 STACKSG SEGMENT PARA SACK 'Stack' 5 0000 0C [ DB 12 DUP('STACKSEG') 6 53 54 41 43 7 4B 53 45 47 8 ] 9 10 0060 STACKSG ENDS 11 ;----------------------------------------------- 12 0000 CODESG SEGMENT PARA 'Code' 13 0000 BEGIN PROC FAR 14 ASSUME SS:STACKSG,CS:CODESG,DS:NOTHING 15 0000 1E PUSH DS ;Записать DS в стек 16 0001 2B C0 SUB AX,AX ;Записать ноль 17 0003 50 PUSH AX ; в стек 18 19 0004 B8 0123 MOV AX,0123H ;Записать шест.0123 в AX 20 0007 05 0025 ADD AX,0025H ;Прибавить шест.25 к AX 21 000A 8B D8 MOV BX,AX ;Переслать AX в BX 22 000C 03 D8 ADD BX,AX ;Прибавить BX к AX 23 000E 8B CB MOV CX,BX ;Переслать BX в CX 24 0010 2B C8 SUB CX,AX ;Вычесть AX из CX 25 0012 2B C0 SUB AX,AX ;Очистить AX 26 0014 90 NOP 27 0015 CB RET ;Возврат в DOS 28 0016 BEGIN ENDP ;Конец процедуры 29 30 0016 CODESG ENDS ;Конец сегмента 31 END BEGIN ;Конец программы ------------------------------------------------------------------------- Segments and Groups: N a m e Size Align Combine Class CODESG . . . . . . . . . . . . 0016 PARA NONE 'CODE' STACKSG. . . . . . . . . . . . 0060 PARA STACK 'STACK' Symbols: N a m e Type Value Attr BEGIN. . . . . . . . . . . . . F PROC 0000 CODESG Length=0016 __________________________________________________________________________ Рис.4.1. Листинг ассемблирования программы. В начале листинга обратите внимание на реакцию ассемблера на директивы PAGE и TITLE. Никакие директивы, включая SEGMENT, PROC, ASSUME и END не генерируют машинных кодов. Листинг содержит не только исходный текст, но также слева транслированный машинный код в шестнадцатиричном формате. В самой левой колонке находится шест.адреса команд и данных. Сегмент стека начинается с относительного адреса 0000. В действительности он загружается в память в соответствии с адpесом в регистре SS и нулевым смещением относительно этого адpеса. Директива SEGMENT устанавливает 16-кратный адрес и указывает ассемблеру, что это есть начало стека. Сама директива не генерирует машинный код. Команда DB, также находится по адресу 0000, содержит 12 копий слова 'STACKSEG'; машинный код представлен шест.0C (десятичное 12) и шест. представлением ASCII символов. (В дальнейшем можно использовать отладчик для просмотра результатов в памяти). Сегмент стека заканчивается по адресу шест.0060, который эквивалентен десятичному значению 96 (12х8). Сегмент кода также начинается с относительного адреса 0000. Он загружается в память в соответствии с адресом в pегистре CS и нулевым смещением относительно этого адреса. Поскольку ASSUME является директивой ассемблеру, то первая команда, которая генерирует действительный машинный код есть PUSH DS - однобайтовая команда (1E), находящаяся на нулевом смещении. Следующая команда SUB AX,AX генерирует двухбайтовый машинный код (2B C0), начинающийся с относительного адреса 0001. Пробел между байтами только для удобочитаемости. В данном примере встречаются одно-, двух- и трехбайтовые команды. Последняя команда END содержит операнд BEGIN, который имеeт отношение к имени команды PROC по смещению 0000. Это есть адрес сегмента кодов, с которого начинается выполнение после загрузки программы. Листинг ассемблирования программы EXASM1.LST, имеет по директиве PAGE шиpину 132 символа и может быть распечатан. Многие принтеры могут печатать текст сжатым шрифтом. Включите ваш принтер и введите команду MODE LPT1:132,6 Таблица идентификаторов ------------------------- За листингом ассемблирования программы следует таблица идентификаторов. Первая часть таблицы содержит определенные в программе сегменты и группы вместе с их размером в байтах, выравниванием и классом. Вторая часть содержит идентификаторы - имена полей данных в сегменте данных (в нашем примере их нет) и метки, назначенные командам в сегменте кодов (одна в нашем примере). Для того, чтобы ассемблер не создавал эту таблицу, следует указать параметр /N вслед за командой MASM, т.е. MASM/N. Двухпроходный ассемблер ------------------------- В процессе трансляции исходной программы ассемблер делает два просмотра исходного текста, или два прохода. Одной из основных причин этого являются ссылки вперед, что происходит в том случае, когда в некоторой команде кодируется метка, значение которой еще не определено ассемблером. В первом проходе ассемблер просматривает всю исходную прогpамму и строит таблицу идентификаторов, используемых в программе, т.е. имен полей данных и меток программы и их относительных aдресов в программе. В первом проходе подчитывается объем объектного кода, но сам объектный код не генерируется. Во втором проходе ассемблер использует таблицу идентификаторов, построенную в первом проходе. Так как теперь уже известны длины и относительные адреса всех полей данных и команд, то ассемблер может сгенерировать объектный код для каждой команды. Ассемблер создает, если требуется, файлы: OBJ, LST и CRF. КОМПАНОВКА ПРОГРАММЫ ________________________________________________________________ Если в результате ассемблирования не обнаружено ошибок, то cледующий шаг - компановка объектного модуля. Файл EXASM1.OBJ содержит только машинный код в шестнадцатеричной форме. Так как программа может загружаться почти в любое место памяти для выполнения, то ассемблер может не определить все машинные адреса. Кроме того, могут использоваться другие (под) программы для объединения с основной. Назначением программы LINK является завершение определения адресных ссылок и объединение (если требуется) нескольких программ. Для компановки ассемблированной программы с дискеты, вставьте дискету DOS в дисковод A, а дискету с программой в дисковод B. Пользователи винчестерского диска могут загрузить компоновщик LINK прямо с дисковода C. Введите команду LINK и нажмите клавишу Return. После загрузки в память, компоновщик выдает несколько запросов (аналогично MASM), на которые необходимо ответить: Запрос компоновщика Ответ Действие Object Modules [.OBJ]: B:EXASM1 Компонует EXASM1.OBJ Run file [EXASM1.EXE]: B: Создает EXASM1.EXE List file [NUL.MAP]: CON Создает EXASM1.MAP Libraries [.LIB]: [Return] По умолчанию Первый запрос - запрос имен объектных модулей для компановки, тип OBJ можно опустить. Второй запрос - запрос имени исполнимого модуля (файла), (по умолчанию A:EXASM1.EXE). Ответ B: требует, чтобы компоновщик создал файл на дисководе В. Практика сохранения одного имени (при разных типах) файла упрощает работу с программами. Третий запрос предполагает, что LINK выбирает значение по yмолчанию - NUL.MAP (т.е. MAP отсутствует). MAP-файл содержит таблицу имен и размеров сегментов и ошибки, которые обнаружит LINK. Типичной ошибкой является неправильное определение сегмента стека. Ответ CON предполагает, что таблица будет выведена на экран, вместо записи ее на диск. Это позволяет сэкономить место в дисковой памяти и сразу просмотреть таблицу непосредственно на экране. В нашем примере MAP-файл содержит следующую информацию: Start Stop Length Name 00000H 00015H 0016H CODESG 00020H 0007FH 0060H STACKSG Для ответа на четвертый запрос - нажмите Return, что укажет компоновщику LINK принять остальные параметры по yмолчанию. Описание библиотечных средств можно найти в руководстве по DOS. На данном этапе единственной возможной ошибкой может быть yказание неправильных имен файлов. Исправить это можно только перезапуском программы LINK. В прил.4 перечислен ряд pежимов компоновщика LINK. ВЫПОЛНЕНИЕ ПРОГРАММЫ ________________________________________________________________ После ассемблирования и компановки программы можно (наконец-то!) выполнить ее. На рис.4.2 приведена схема команд и шагов для ассемблирования, компановки и выполнения программы EXASM1. Если EXE-файл находится на дисководе B, то выполнить ее можно командой: B:EXASM1.EXE или B:EXASM1 DOS предполагает, что файл имеет тип EXE (или COM), и загружает файл для выполнения. Но так как наша программа не вырабатывает видимых результатов, выполним ее трассировкой под отладчиком DEBUG. Введите DEBUG B:EXASM1.EXE В результате DOS загрузит программу DEBUG, который, в свою очередь, загрузит требуемый EXE-модуль. После этого отладчик выдаст дефис (-) в качестве приглашения. Для просмотра сегмента стека введите D SS:0 Эту область легко узнать по 12-кратному дублированию константы STACKSEG. Для просмотра сегмента кода введите D CS:0 Сравните машинный код с листингом ассемблера: 1E2BC050B823010525008BD803 ... Непосредственные операнды, приведенные в листинге ассемблирования как 0123 и 0025 в памяти представлены в виде 2301 и 2500 соответственно. В данном случае листинг ассемблирования не вполне соответствует машинному коду. Все двухбайтовые адреса (слова) и непосредственные операнды в машинном коде хранятся в обратном порядке. __________________________________________________________________________ __________________________________________________________________________ Рис.4.2. Схема ассемблирования, компановки и выполнения программы. Введите R для просмотра содержимого регистров и выполните прогpамму с помощью команды T (трассировка). Обратите внимание на воздействие двух команд PUSH на стек - в вершине стека теперь находится содержимое регистра DS и нулевой адрес. В процессе пошагового выполнения программы обратите внимание на содержимое регистров. Когда вы дойдете до команды RET, можно ввести Q (Quit - выход) для завершения работы отладчика. Используя команду dir, можно проверить наличие ваших файлов на диске: DIR B:EXASM1.* В результате на экране появится следующие имена файлов: EXASM1.BAK (если для корректировки EXASM1.ASM использовался редактор EDLIN), EXASM1.ASM, EXASM1.OBJ, EXASM1.LST, EXASM1.EXE и EXASM1.CRF. Последовательность этих файлов может быть иной в зависимости от того, что уже находится на диске. Очевидно, что разработка ряда программ приведет к занятию дискового пространства. Для проверки оставшегося свободного места на диске полезно использовать команду DOS CHKDSK. Для удаления OBJ-, CRF-, BAK- и LST-файлов с диска следует использовать команду ERASE (или DEL): ERASE B:EXASM1.OBJ, ... Следует оставить (сохранить) ASM-файл для последующих изменений и EXE-файл для выполнения. В следующем разделе представлено определение данных в сегменте данных. Позже будет описана таблица перекрестных cсылок. ПРИМЕР ИСХОДНОЙ ПРОГРАММЫ ________________________________________________________________ Особенность программы, приведенной на рис.4.1, состоит в том, что она не содержит определения данных. Обычно все программы имеют определенные константы, рабочие поля для арифметических вычислений и области для операций ввода-вывода. В главе 2 (рис.2.3) была рассмотрена программа в машинных кодах, в которой были определены два поля данных. В этой главе на рис.4.3 приводится аналогичная программа, но на этот раз написанная на языке ассемблера и для краткости уже ассемблированная. Эта программа знакомит с несколькими новыми особенностями. __________________________________________________________________________ 1 page 60,132 2 TITLE EXASM2 (EXE) Операции пересылки и сложения 3 ;------------------------------------------------- 4 0000 STACKSG SEGMENT PARA SACK 'Stack' 5 0000 20 [ DB 32 DUP(?) 6 ???? 7 ] 8 9 0040 STACKSG ENDS 10 ;------------------------------------------------- 11 0000 DATASG SEGMENT PARA 'Data' 12 0000 00FA FLDA DW 250 13 0002 007D FLDB DW 125 14 0004 ???? FLDC DW ? 15 0006 DATASG ENDS 16 ;------------------------------------------------- 17 0000 CODESG SEGMENT PARA 'Code' 18 0000 BEGIN PROC FAR 19 ASSUME CS:CODESG,DS:DATASG,SS:STACKSG,ES:NO THING 20 0000 1E PUSH DS ;Записать DS в стек 21 0001 2B C0 SUB AX,AX ;Записать в стек 22 0003 50 PUSH AX ; нулевой адрес 23 0004 B8 ---- R MOV AX,DATASG ;Поместить адрес DATASG 24 0007 8E D8 MOV DS,AX ; в регистр DS 25 26 0009 A1 0000 R MOV AX,FLDA ;Переслать 0250 в AX 27 000C 03 06 0002 R ADD AX,FLDB ;Прибавить 0125 к AX 28 0010 A3 0004 R MOV FLDC,AX ;Записать сумму в FLDC 29 0013 CB RET ;Вернуться в DOS 30 0014 BEGIN ENDP 31 0014 CODESG ENDS 32 END BEGIN ------------------------------------------------------------------------ Segments and Groups: N a m e Size Align Combine Class CODESG . . . . . . . . . . . . 0014 PARA NONE 'CODE' DATASG . . . . . . . . . . . . 0006 PARA NONE 'DATA' STACKSG. . . . . . . . . . . . 0040 PARA STACK 'STACK' Symbols: N a m e Type Value Attr BEGIN. . . . . . . . . . . . . F PROC 0000 CODESG Length=0014 FLDA . . . . . . . . . . . . . L WORD 0000 DATASG FLDB . . . . . . . . . . . . . L WORD 0002 DATASG FLDC . . . . . . . . . . . . . L WORD 0004 DATASG __________________________________________________________________________ Рис.4.3. Листинг ассемблирования программы с сегментом данных. Сегмент стека содержит директиву DW (Define Word - определить cлово), описывающая 32 слова, в которых генерируется неопределенное значение обозначенное знаком вопроса (?). Определение размера стека в 32 слова является наиболее реальным, так как в больших программах может потребоваться много "прерываний" для ввода-вывода и вызовов подпрограмм - все они используют стек. Определение стека дублированием константы 'STACKSEG' в примере на pис.3.2 необходимо лишь для удобства при работе с отладчиком DEBUG. З а м е ч а н и е: Определяйте размер стека не менее 32 слов. При малых размерах стека ни ассемблер, ни компоновщик не смогут определить этого и выполнение программы может разрушиться самым непредсказуемым образом. В примере на рис.4.3 определен сегмент данных DATASG, начинающийся по относительному адресу 0000. Этот сегмент содержит три значения в формате DW. Поле FLDA определяет слово (два байта), содержащее десятичное значение 250, которое ассемблер транслирует в шест.00FA (см. на рисунке слева). Поле FLDB определяет слово с десятичным значением 125, котоpое транслируется в шест.007D. Действительные значения этих двух констант в памяти - FA00 и 7D00 соответственно, что можно проверить c помощью отладчика DEBUG. Поле FLDC определяет слово с неизвестным значением, обозначенным знаком вопроса (?). Сегмент кода в данном примере имеет имя CODESG и отличается новыми особенностями, связанными с сегментом данных. Во-первых, директива ASSUME указывает на определение DATASG через регистр DS. Данной программе не требуется регистр ES, но некоторые программисты описывают его для стандартизации. Во-вторых, после команд PUSH, SUB и PUSH, которые инициализируют стек, следуют две команды, обеспечивающие адресацию сегмента данных: 0004 B8 ---- R MOV AX,DATASG 0007 8E D8 MOV DS,AX Первая команда MOV загружает DATASG в регистр AX. Конечно, на самом деле команда не может загрузить сегмент в регистр - она загружает лишь адрес сегмента DATASG. Обратите внимание на машинный код слева: B8 ---- R Четыре дефиса говорят о том, что ассемблер не может определить aдрес DATASG; он определяется лишь когда объектная программа будет скомпонована и загружена для выполнения. Поскольку загpузчик может расположить программу в любом месте памяти, асcемблер оставляет данный адрес открытым и показывает это символом R; компоновщик должен будет подставить в это место действительный адрес. Вторая команда MOV пересылает содержимое регистра AX в регистр DS. Таким образом, данная программа имеет директиву ASSUME, которая соотносит регистр DS с сегментом данных, и команды, инициализирующие регистр DS относительным адресом DATASG. Могут возникнуть два вопроса по поводу этой программы. Во-первых, почему не использовать одну команду для инициализации регистра DS, например MOV DS,DATASG ? Дело в том, что не существует команд для непосредственной переcылки данных из памяти в регистр DS. Следовательно, для инициализации DS необходимо кодировать две команды. Во-вторых, почему программа инициализирует регистр DS, а регистры SS и CS нет? Оказывается, регистры SS и CS инициализируются автоматически при загрузке программы для выполнения, а ответственность за инициализацию регистра DS и, если требуется ES, лежит полностью на самой программе. Пока все эти требования могут показаться весьма туманными, но cейчас нет необходимости понимать их. Все последующие программы используют аналогичную стандартную инициализацию стека и сегмента данных. Поэтому можно просто копировать данные коды для каждой новой программы. Действительно, вы можете сохранить на диске стандартную часть программы и для каждой новой программы копировать эту часть с новым именем, и, используя затем редактор, записать дополнительные команды. В качестве упражнения, создайте с помощью вашего редактора программу, приведенную на рис.4.3, выполните ее ассемблирование и компоновку. Затем с помощью отладчика DEBUG просмотрите сегмент кодов, сегмент данных, регистры и проделайте пошаговое выполнение программы. ФАЙЛ ПЕРЕКРЕСТНЫХ ССЫЛОК ________________________________________________________________ В процессе трансляции ассемблер создает таблицу идентификаторов (CRF), которая может быть представлена в виде листинга перекрестных ссылок на метки, идентификаторы и переменные в программе. Для получения данного фала, необходимо на четвертый запрос ассемблера, oтветить B:, полагая, что файл должен быть создан на диске B: cross-reference [NUL.CRF]:B: [Return] Далее необходимо преобразовать полученный CRF-файл в отсортиpованную таблицу перекрестных ссылок. Для этого на ассемблерном диске имеется соответствующая программа. После успешного ассемблирования введите команду CREF. На экране появится два запроса: Cref filename [.CRF]: List filename [cross-ref.REF]: На первый запрос введите имя CRF-файла, т.е. B:EXASM1. На второй запрос можно ввести только номер дисковода и получить имя по умолчанию. Такой выбор приведет к записи CRF в файл перекрестных ссылок по имени EXASM1.REF на дисководе B. Для распечатки файла перекрестных ссылок используйте команду DOS PRINT. В приложении 4 приведен ряд режимов программы CREF. __________________________________________________________________________ EXASM2 (EXE) Операции пересылки и сложения Symbol Cross Reference (# is definition) Cref-1 BEGIN. . . . . . . . . . . . 18# 30 32 CODE . . . . . . . . . . . . 17 CODESG . . . . . . . . . . . 17# 19 31 DATA . . . . . . . . . . . . 11 DATASG . . . . . . . . . . . 11# 15 19 23 FLDA . . . . . . . . . . . . 12# 26 FLDB . . . . . . . . . . . . 13# 27 FLDC . . . . . . . . . . . . 14# 28 STACK. . . . . . . . . . . . 4 STACKSG. . . . . . . . . . . 4# 9 19 10 Symbols __________________________________________________________________________ Рис.4.4. Таблица перекрестных ссылок. На рис.4.4 показана таблица перекрестных ссылок для программы, приведенной на рис.4.3. Все идентификаторы в таблице предcтавлены в алфавитном порядке и для каждого из них указаны номеpа строк в исходной программе, где они определены и имеют ссылки. Имена сегментов и элементов данных представлены в алфавитном поpядке. Первое число справа в формате n# указывает на номер строки в LST-файле, где определен соответствующий идентификатор. Еще правее находятся числа, указывающие на номера строк, где имеются cсылки на этот идентификатор. Например, CODESG определен в строке 17 и имеет ссылки на строках 19 и 32. ОСНОВНЫЕ ПОЛОЖЕНИЯ НА ПАМЯТЬ ________________________________________________________________ - Ассемблер преобразует исходную программу в OBJ-файл, а компоновщик - OBJ-файл в загрузочный EXE-файл. - Внимательно проверяйте запросы и ответы на них для программ (M)ASM, LINK и CREF прежде чем нажать клавишу Return. Будьте особенно внимательны при указании дисковода. - Программа CREF создает распечатку перекрестных ссылок. - Удаляйте ненужные файлы с вашего диска. Регулярно пользуйтесь программой CHKDSK для проверки свободного места на диске. Кроме того периодически создавайте резервные копии вашей программы, храните резервную дискету и копируйте ее заново для последующего программирования. ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ ________________________________________________________________ 4.1. Введите команду MASM и ответьте на запросы для ассемблирования программы по имени TEMPY.ASM с получением файлов LST, OBJ и CRF, полагая, что дискета с программой находится на дисководе B. 4.2. Введите команды для программы TEMPY (из вопроса 4.1) а) для выполнения через отладчик DEBUG, б) для непосредственного выполнения из DOS. 4.3. Объясните назначение каждого из следующих файлов: а) file.BAK, б) file.ASM, в) file.LST, г) file.CRF, д) file.OBJ, е) file.EXE, ж) file.MAP. 4.4. Напишите две команды для инициализации регистра DS, полагая, что имя сегмента данных - DATSEG. 4.5. Составьте ассемблерную программу для: - пересылки шест.30 (непосредственное значение) в регистр AL; - сдвига содержимого регистра AL на один бит влево (команда SHL) - пересылки шест.18 (непосредственное значение) в регистр BL; - умножения регистра AL на BL (команда MUL BL). Не забывайте команду RET. В программе нет необходимости определять и инициализировать сегмент данных. Не забывайте также копировать стандартную часть программы (основу программы) и использовать редактор для ее развития. Выполните ассемблирование и компоновку. Используя отладчик DEBUG, проверьте сегмент кодов, регистры и проделайте пошаговое выполнение (трассировку) программы. 4.6. Модифицируйте программу из вопроса 4.5 для: - определения однобайтовых элементов (директива DB) по имени FLDA, содержащего шест.28, и по имени FLDB, содержащего шест.14; - определения двухбайтового элемента (директива DW) по имени FLDC, не имеющего значения; - пересылки содержимого поля FLDA в регистр AL и сдвига на один бит; - умножения содержимого регистра AL на значение в поле FLDB (MUL FLDB); - пересылки результата из регистра AX в поле FLDC. Для данной программы необходим сегмент данных. Выполните ассемблирование, компоновку программы и тестирование с помощью отладчика DEBUG. ГЛАВА 5 Определение данных __________________________________________________________________________ Ц е л ь: Показать методам определения констант и рабочих полей в ассемблерной программе. ВВЕДЕНИЕ ________________________________________________________________ Сегмент данных предназначен для определения констант, рабочих полей и областей для ввода-вывода. В соответствии с имеющимися директивами в ассемблере разрешено определение данных различной длины: например, директива DB определяет байт, а директива DW oпределяет слово. Элемент данных может содержать непосредственное значение или константу, определенную как символьная строка или как числовое значение. Другим способом определения константы является непосредственное значение, т.е. указанное прямо в ассемблерной команде, например: MOV AL,20H В этом случае шестнадцатеричное число 20 становится частью машинного объектного кода. Непосредственное значение ограничено oдним байтом или одним словом, но там, где оно может быть применено, оно является более эффективным, чем использование конcтанты. ДИРЕКТИВЫ ОПРЕДЕЛЕНИЯ ДАННЫХ ________________________________________________________________ Ассемблер обеспечивает два способа определения данных: во-первых, через указание длины данных и, во-вторых, по их cодержимому. Рассмотрим основной формат определения данных: [имя] Dn выражение Имя элемента данных не обязательно (это указывается квадратными скобками), но если в программе имеются ссылки на некоторый элемент, то это делается посредством имени. Правила написания имен приведены в разделе "Формат кодирования" в главе 3. Для определения элементов данных имеются следующие директивы: DB (байт), DW (слово), DD (двойное слово), DQ (учетверенное слово) и DT (десять байт). Выражение может содержать константу, например: FLD1 DB 25 или знак вопроса для неопределенного значения, например FLDB DB ? Выражение может содержать несколько констант, разделенных запятыми и ограниченными только длиной строки: FLD3 DB 11, 12, 13, 14, 15, 16, ... Ассемблер определяет эти константы в виде последовательности cмежных байт. Ссылка по имени FLD3 указывает на первую константу, 11, по FLD3+1 - на вторую, 12. (FLD3 можно представить как FLD3+0). Например команда MOV AL,FLD3+3 загружает в регистр AL значение 14 (шест. 0E). Выражение допускает также повторение константы в следующем формате: [имя] Dn число-повторений DUP (выражение) ... Следующие три примера иллюстрируют повторение: DW 10 DUP(?) ;Десять неопределенных слов DB 5 DUP(14) ;Пять байт, содержащих шест.14 DB 3 DUP(4 DUP(8));Двенадцать восьмерок В третьем примере сначала генерируется четыре копии десятичной 8 (8888), и затем это значение повторяется три раза, давая в pезультате двенадцать восьмерок. Выражение может содержать символьную строку или числовую константу. Символьные строки ------------------- Символьная строка используются для описания данных, таких как, например, имена людей или заголовки страниц. Содержимое строки oтмечается одиночными кавычками, например, 'PC' или двойными кавычками - "PC". Ассемблер переводит символьные строки в объектный код в обычном формате ASCII. Символьная строка определяется только директивой DB, в котоpой указывается более двух символов в нормальной последовательности слева направо. Следовательно, директива DB представляет единственно возможный формат для определения символьных данных. На рис.5.1 приведен ряд примеров. __________________________________________________________________________ page 60,132 TITLE EXDEF (EXE) Определение данных 0000 DATASG SEGMENT PARA 'Data' ; Определение байта - DB: ; ---------------------- 0000 ?? FLD1DB DB ? ;Не инициализировано 0001 50 65 72 73 6F 6E FLD2DB DB 'Personal Computer' ;Сим. строка 61 6C 20 43 6F 6D 70 75 74 65 72 0012 20 FLD3DB DB 32 ;Десятичная константа 0013 20 FLD4DB DB 20H ;Шест. константа 0014 59 FLD5DB DB 01011001B ;Двоичная константа 0015 01 4A 41 4E 02 46 FLD6DB DB 01,'JAN',02,'FEB',03,'MAR' ;Таб-ца 45 42 03 4D 41 52 0021 33 32 36 35 34 FLD7DB DB '32654' ;Символьные числа 0026 0A [ 00 ] FLD8DB DB 10 DUP(0) ;Десять нулей ; Определение слова - DW: ; ---------------------- 0030 FFF0 FLD1DW DW 0FFF0H ;Шест. константа 0032 0059 FLD2DW DW 01011001B ;Двоичная константа 0034 0021 R FLD3DW DW FLD7DB ;Адресная константа 0036 0003 0004 0007 FLD4DW DW 3,4,7,8,9 ;Пять констант 0008 0009 0040 05 [ 0000 ] FLD5DW DW 5 DUP(0) ;Пять нулей ; Определение двойного слова - DD: ; ------------------------------- 004A ???????? FLD1DD DD ? ;Не инициализировано 004E 43 50 00 00 FLD2DD DD 'PC' ;Символьная строка 0052 3C 7F 00 00 FLD3DD DD 32572 ;Десятичное значение 0056 11 00 00 00 FLD4DD DD FLD3DB - FLD2DB ;Разность адресов 005A 0E 00 00 00 31 00 FLD5DD DD 14,49 ;Две константы 00 00 ; Определ. учетверенного слова - DQ: ; --------------------------------- 0062 ???????????????? FLD1DQ DQ ? ;Не инициализировано 006A 47 4D 00 00 00 00 FLD2DQ DQ 04D47H ;Шест. константа 00 00 0072 3C 7F 00 00 00 00 FLD3DQ DQ 32572 ;Десятич. константа 00 00 ; Определение десяти байт - DT: ; ---------------------------- 007A ?????????????????? FLD1DT DT ? ;Не инициализировано ?? 0084 43 50 00 00 00 00 FLD2DT DT 'PC' ;Символьная строка 00 00 00 00 008E DATASG ENDS END ------------------------------------------------------------------------ Segments and Groups: N a m e Size Align Combine Class DATASG . . . . . . . . . 008E PARA NONE 'DATA' Symbols: N a m e Type Value Attr FLD1DB . . . . . . . . . L BYTE 0000 DATASG FLD1DD . . . . . . . . . L DWORD 004A DATASG FLD1DQ . . . . . . . . . L QWORD 0062 DATASG FLD1DT . . . . . . . . . L TBYTE 007A DATASG FLD1DW . . . . . . . . . L WORD 0030 DATASG FLD2DB . . . . . . . . . L BYTE 0001 DATASG FLD2DD . . . . . . . . . L DWORD 004E DATASG FLD2DQ . . . . . . . . . L QWORD 006A DATASG FLD2DT . . . . . . . . . L TBYTE 0084 DATASG FLD2DW . . . . . . . . . L WORD 0032 DATASG FLD3DB . . . . . . . . . L BYTE 0012 DATASG FLD3DD . . . . . . . . . L DWORD 0052 DATASG FLD3DQ . . . . . . . . . L QWORD 0072 DATASG FLD3DW . . . . . . . . . L WORD 0034 DATASG FLD4DB . . . . . . . . . L BYTE 0013 DATASG FLD4DD . . . . . . . . . L DWORD 0056 DATASG FLD4DW . . . . . . . . . L WORD 0036 DATASG FLD5DB . . . . . . . . . L BYTE 0014 DATASG FLD5DD . . . . . . . . . L DWORD 005A DATASG FLD5DW . . . . . . . . . L WORD 0040 DATASG Length =0005 FLD6DB . . . . . . . . . L BYTE 0015 DATASG FLD7DB . . . . . . . . . L BYTE 0021 DATASG FLD8DB . . . . . . . . . L BYTE 0026 DATASG Length =000A __________________________________________________________________________ Рис.5.1. Определение символьных строк и числовых величин. Числовые константы -------------------- Числовые константы используются для арифметических величин и для aдресов памяти. Для описания константы кавычки не ставятся. Ассемблер преобразует все числовые константы в шестнадцатеричные и записывает байты в объектном коде в обратной последовательности - справа налево. Ниже показаны различные числовые форматы. Д е с я т и ч н ы й ф о р м а т. Десятичный формат допускает десятичные цифры от 0 до 9 и обозначается последней буквой D, которую можно не указывать, например, 125 или 125D. Несмотря на то, что ассемблер позволяет кодирование в десятичном формате, он преобразует эти значения в шест. объектный код. Например, десятичное число 125 преобразуется в шест. 7D. Ш е с т н а д ц а т и р и ч н ы й ф о р м а т. Шестнадцатиричный формат допускает шест. цифры от 0 до F и обозначается последней буквой H. Так как ассемблер полагает, что с буквы начинаются идентификаторы, то первой цифрой шест. константы должна быть цифра от 0 до 9. Например, 2EH или 0FFFH, которые ассемблер преобразует соответственно в 2E и FF0F (байты во втором примере записываются в объектный код в обратной последовательности). Д в о и ч н ы й ф о р м а т. Двоичный формат допускает двоичные цифры 0 и 1 и обозначается последней буквой B. Двоичный формат обычно используется для более четкого представления битовых значений в логических командах AND, OR, XOR и TEST. Десятичное 12, шест. C и двоичное 1100B все генерируют один и тот же код: шест. 0C или двоичное 0000 1100 в зависимости от того, как вы рассматриваете содержимое байта. В о с ь м е р и ч н ы й ф о р м а т. Восьмеричный формат допускает восьмеричные цифры от 0 до 7 и обозначается последней буквой Q или O, например, 253Q. На сегодня восьмеричный формат используется весьма редко. Д е с я т и ч н ы й ф о р м а т с п л а в а ю щ е й т о ч к о й. Этот формат поддерживается только ассемблером МASM. При записи символьных и числовых констант следует помнить, что, например, символьная константа, определенная как DB '12', представляет символы ASCII и генерирует шест.3132, а числовая константа, oпределенная как DB 12, представляет двоичное число и генерирует шест.0C. Рис.5.1 иллюстрирует директивы для определения различных символьных строк и числовых констант. Сегмент данных был ассемблирован для того, чтобы показать сгенерированный объектный код (слева). ДИРЕКТИВА ОПРЕДЕЛЕНИЯ БАЙТА (DB) ________________________________________________________________ Из различных директив, определяющих элементы данных, наиболее полезной является DB (определить байт). Символьное выражение в диpективе DB может содержать строку символов любой длины, вплоть до конца строки (см. FLD2DB и FLD7DB на рис.5.1). Обратите внимание, что константа FLD2DB содержит символьную строку 'Personal Computer'. Объектный код показывает символы кода ASCII для каждого байта. Шест.20 представляет символ пробела. Числовое выражение в директиве DB может содержать одну или более однобайтовых констант. Один байт выражается двумя шест. цифpами. Наибольшее положительное шест. число в одном байте это 7F, все "большие" числа от 80 до FF представляют отрицательные значения. В десятичном исчислении эти пределы выражаются числами +127 и -128. В примере на рис.5.1 числовыми константами являются FLD3DB, FLD4DB, FLD5DB и FLD8DB. Поле FLD6DB представляет смесь из числовых и строковых
Материалы находятся на сайте http://cracklab.narod.ru/asm/